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Abstract

An algorithm for computing formula representations of
instances of the Meijer G function is discussed. This
algorithm is a generalization of an algorithm from a
previous paper by the same author. The current pa-
per discusses the Meijer G function briefly; the theory,
strategy, and lookup routine certificates of the new al-
gorithm; and applications to the problem of definite
integration.

1 Introduction

Our previous paper “Hypergeometric Function Repre-
sentations” [15], presented an algorithm for computing
formula representations of the hypergeometric function
F defined by
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where we use notation
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is a typical formula representation. Ability to compute
such representations is applicable to integration, differ-
ential equations, closed form summation, and difference
equations [7], [10], [13].

The Meijer G function, G(a; 5; c d: z), defined in the
next section, is a generalization of the hypergeometric
function F(&@;b;z). Every hypergeometric function is a
G function:
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However, not every G function has a simple represen-
tation in terms of hypergeometric functions. In par-
ticular, Bessel functions Y, and K, (u € Z), Kelvin
functions ker, and kei, (u € Z), Whittaker function
W (v € £ Z), Lommel function S,,, (v € Z), and Leg-
endre function Qj, (v € Z) can only be represented by
G functions.
Our new algorithm computes formula representa-
tions such as
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An ability to produce such representations is crucially
important to the solution of hypergeometric type inte-
grals which appear copiously in various integral tables
[5], [11], [12], [13], used by scientists and mathemati-
cians.

In this paper, we repeat some familiar themes from
our previous work [15], shift operators, contiguity
relations, inverse shift operators, suitable ori-
gins, accessible origins, proper sequences, and lookup
certificates but in a new and different context. Just
the same, the current paper is completely self-contained
and will stand on its own.
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2 Definition

We define the Meijer G function by the inverse Laplace
transform
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where L is one of three types of integration paths L4,
Ly, and L_ .
A schematic plot of the integration path L (L,
L_, or L,1;) and the poles of the integrand (x)
is shown below.
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Contour L is one of three types of integration paths
Loo, L_oo, and L y;. Contour Lo, starts at co 414 ¢y
and finishes at 0o + i ¢2. Contour L_, starts at —oo +
i ¢1 and finishes at —oo 4+ 4 ¢. Contour L. 4;. starts
at v — 400 and finishes at v 4+ 4 00. All the paths L,
L_, and L,; put all ¢; + & poles on the right and
all other poles of the integrand (which must be of the
form a; — 1+ k) on the left. Define G, G_o, and
G +ioo to be the G functions defined by the Lo, L_ o,
and L, contours.

Related to this definition of Meijer G, we also define
quantities m, n, p, q, 8, §, and ¢ by m = |@|, n = |b]|,
p=|¢l,q=1d], B=m-n+p—q, d=m+n—p—g,
and
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Analysis of the absolute convergence of the contour inte-
gral using Stirling’s asymptotic formula for the gamma
function produces:

Theorem. G, converges absolutely if

(1) 6 <0 or

(2)=0 and Re(z) <0 or

(8) § =0, Re(z)=0, —Re(o) < -1

Theorem. G_,, converges absolutely if

(1) 6 >0 or

and

(2)5=0
(3)6=0,

and Re(z) >0 or

Re(2) =0, and —Re(o) < -1

Theorem. G.,i converges absolutely if

(1) |Im(z)| <ﬂg or

(2) | Im(z) | = Bg and —Re(o)+4 (’y—i— %) < -1

3 Relation to Traditional Notation
The Meijer G function is traditionally defined by an

inverse Mellin transform
@b 1 l—d+y,é—y
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Hence the traditional definition is related to our defini-
tion by
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The new notation has some advantages over the old no-
tation. First, the parameters of the Meijer G _fpnction
are separated out into four natural groups @, b, &, and
d. Second, possibly more controversial, we place e¥*
instead of 2¥ inside the integrand. We deem this de-
sirable because of the “multi-valued” character of z¥.
Finally, the ™ subscripts and superscripts which are

pPa
now redundant are omitted.

4 Properties

The Meijer G function has various properties [4], [6],
[13]. Among those of interest to us are:

Theorem. (Basic Properties.)

etzG(c'i; ;é’;d?z) :G(c'i+t;l;+t;é’+t;ci+t;z)



Theorem. (Duplication Formula.)
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where we use notation
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Theorem. (Slater’s Theorem.) If Gu con-

verges and the elements of ¢ are distinct mod 1, then

XF<1—5+Ch,1—g+Ch;1—C*+Ch,1—J+Ch§
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where ¢* = € with ¢;, omitted.

5 Integration Theorems

Four theorems below are not original but serve as a
small reference guide indicating the usefulness of the
Meijer G function to solving integration problems. These
theorems are very general since many special functions
can be represented as G functions. We omit some rather
complicated technical conditions on parameters which
appear in the last three theorems pertaining to definite
integration. Readers may consult section 2.24 of Inte-
grals and Series Volume 3: More Special Functions [13]

for their complete statement and additional theorems.

Theorem. (Indefinite Integration.)
/ G (a’;é’;a’;af;z) dz =G (1,5;5;5;0,@)
Theorem. (One G Function.)
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Theorem. (Two G Functions.)
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where

G1=G (61;51;61;d2;u10g(Z) +v1)
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6 Shift Operators

Define the shift operators A;, B;, C;, and D; by
Ai =D+ (—a; +1)
Bi=—-D+ (b; - 1)
Ci=—-D+g¢
D; =D —d;

where D = (0/0z) is the operator for differentiation. It
can be seen that A; and B; decrement indices and that
C; and D; increment indices. Visibly,

where €; are unit vectors.

7 Differential Equation

Applying products of shift operators to G (d’; b; &, J: z)
we see that

(E A; ng) G(c‘i;b;é';d;z) =G(6—1;b_1;5;d;z)
P q
(zl;[l C; £[1 Di) G(a;b;C;d;z) =G(a;b;c+1;d+1;z)



It can be checked that -1 Bitq (d’, b+ é;, ¢, d_: z)

Hence,
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Converting to D notation, we get the differential equa- d=1 §iyy (d’, b,&d—é, z) _
tion for G (Ei; I_)’,é',czz) If we let Ly, Lo, and L be the Dfl == - D]
=0 do (a, b,c,d— e,,z)

operators

N m n The coefficients of these polynomials in A;, B;, C;,

Ly = (-1)""" ¢* H (D + (=a; +1)) H (D + (1 —1b,)) and D; are defined when
7j=1 j=1 - -
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written P g
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8 Contiguity Relations

Operator L is a polynomial in D but
D+pu=A;+(p+a;—1)
D+p=—-B;+(p+b—1) o .
D+p=—Ci+ (p+c) = ()™ ] (a5 —di) [] (b; —di) & #0

=1 =1
D+H:D,+(,Uz+dz) J J
Operators

so L can also be expressed as a polynomial in terms n
of shift operators A;, B;, C;, and D; converting the Al =(D-ai+tn)...(D—a;i+1)
differential equation for G (Ei; b; & d; z) into a difference BY=(-1)" (D-=b;+n) ... (D—=b;+1)
equation among contiguous instances of G which we call Cr=(-1)"(D—c¢i—n—1)...(D—c)
a contiguity relation. )

Let X stand for A, B, C, or D and x stand for a, Dy=(D—-di—n-1)...(D—d)

B, 7y, or § respectively. If we express L as a polynomial

are defined for all a;, b;, ¢;, and d;.
in X;, then we get

Li=®) e X+ ... +0 9 Contiguity Relations Il

Ly=(F) XM+ .. +x0 (5; b, ,d_:z> For example, using the ideas of the previous section,
L L. our routine Contig computes the following contiguity

L=xq (d’,b,é’,d,z) Xf—i-...-i-x()( a,b,c, dz) relation:

where the + signs depend on m, n, p, ¢ and whether X
is A, B, C, D and d = max(m + n,p + q).

These results let us define
o (a+2.5ad2)
)
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G (a1 + 1;5¢1,¢2;d15 2)
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Let 7 be a permutation which sorts # into nondescend-
ing order. Let i = w(Z). Then [§], is nondescending for

=- G (a1 — 25561, 02;dy;
(a1 —di) (a1 — ¢2) (a1 — 1) (o 1,02 h; 2) every 7 € [0,1).
R T Assume (ao,bo,co,do) is a suitable orlgln such that
Bz B3 G~ 1, eidii2) C and F =5 5,
- 1= 155¢61,625a152)t e Cand k=dg+t—a,l=by+t—b,m =C— — t,
a; —dy) (ag —¢2) (a1 — ¢ ’
(a1 —dy) (a1 —¢2) (a1 — 1) Aed—dy—teZ Let
2
B (3a1 “2ma—2me-2adtactad To = (@01, -+, Qom, bo1; -+, bon, €015 ++-5 Cop, dot s -, dog)
F k km l ln m n
+cdi—e*—3a1+a +cz+d1+1) X = (A o A By o B, O, G, DI o, DY)

x (a1 —d) " (a1 =) (a1 —er)

x G (a1;; ¢1, 025 dy; 2)
10 Proper Sequences and Suitable Origins

Definition A sequence S of shift and inverse shift op-
erators A;, B;, C;, D;, Ai_l, Bi_l, Cz-_l, and Di—1 isa
proper sequence if the composition S| g ... 5; is de-

fined.

Definition A quadruple (@o; bo; éo; do) is a suit-
able origin if {@y, bo} and {&, dy} are disjoint. (Hence,
ag; # oi, a0i 7 doi, boi # coi, and bo; # do;.)

Definition A quadruple (a b G CB is accessible
from a quadruple (ao,bo,co,do) if there exists a con-
stant ¢ € C and a proper sequence S of shift and in-
verse shift operators A4;, B;, C;, D;, A;l, B;l, C{l,
and D; ! such that

G(d’;g;é';cz;z)

=835 ...SlG(a'a +t;b-(;+t;c'6+t;d-6+t;z)

11 Strategy

-

Assume {@,b} and {Z,d} are disjoint. Suppose t € C
andﬁz do+t—a,l=>by+t—b, m=¢C—3C —t,
i=d—dy—t € Z. We would try

G é’;_:z)

-

i=1 i
x G (ao,bo,co,do, )

but this will not always work because of restrictions on
where A; ', B; ', C;*, and D; ! are defined.
Given any vector 7, let [¢], be the subvector of ele-

ments of ¥ which are congruent to r mod 1. Given any
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permutation 7 of {1,...,| 7|} let 7(¥) = (vrq),---,Vr(7)))-
Let
.7-7’:(al,...,am,bl,...,bn,cl,...,cp,dl,...,dq)

Let jo = 7(%) and ¥ = n(X). Assume [ o] is nonde-
scending for every r € [0,1).

For any given r € [0,1), plot the elements of [7],
and [§o], as a function of position. Call the resulting
monotonic polygonal curves Y and Yy. For example, we

might get this picture: °
O
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To avoid {@,b} and { d} having elements in common
as we apply X; operators to et* G(do; 50; Co; JE)) we may
proceed left to right where Y lies below Y, and right to
left where Y lies above or on Yj.

Let ¢ be a permutation of ¢ that in every plot of
[7]- and [§o], for every r € [0,1) selects the elements
of [§], from left to right where Y lies below ¥, and
selects the elements of [¢], from right to left where Y
lies above or on Y. Then we should apply X; opera-
tors to e'* G(do; bo; G; do; z) in the order Xo(r(1))s -- -
Xo(w(mtntpte)- That is,

= Xp(a(mintpra) ** Xo) €’

x G (ao;bo;CO;do;Z)



12 Main Algorithm

The main algorithm Formula(d, b, ¢, Jj computes

G(a; b; & d: 2). Subroutine Lookup computes a suitable
origin (dy, 50, o, J;]) for (d, I;, G, d_) Subroutine Plan de-
termines a proper sequence S of shift operators and in-
verse shlft operators which should be applied to
G(ao,bo,co,do, z) to produce G(a; b c d ).

proc Formula(d, b,é, ci)
a:=sort(a)
b:=sort(b)
Z:=sort(C)
d-=sort(d)
Delete elements @: and d have in common.
Delete elements b and ¢ have in common.
[60; bO: é’0: dO; Ba C; M; P]3:L00k11p(5; b: 67 dj:
[607 805 60: %;plan]::Plan(d)i I—): 5’ Cz: a:07 EOJ é'07 C521)7
for bucket in plan do
[shift, e]:=bucket;
if e < 0 then
for j fz'om 1to —e do
[60, bo, 60, do, C]Z
Unshift(shi ft, @, bo, ¢, do, 2°, C, M);
od;
elif e > 0 then
for j from 1 to e do
[a()abO;cOadOaC] .
Shift(shi ft, do, bo, ¢, do,2?,C, M);
od;
fi;
od;
return subs(z = 2'/?,C - B);

13 Lookup Routine

The Lookup routine currently consists of 48 procedures
each of which, in effect, add infinitely many
[do, bo, &, do, B, C, M, p] certificates to a virtual lookup
table.

The following table summarizes the number of for-
mulas in Lookup by their (m,n,p, q) classification:
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SN S N e e e e e e N
N — QO QO N — D) = = N
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14 Results and Conclusion

Due to their complexity and lack of space, we will not
present a number of more advanced theorems related
to calculation of Meijer G Function Representations.
We just say that these theorems go by names such
as Paired Index Theorems (similar to theorems in
Adamchik [3]), a PFD Duplication Formula (related
to a similar formula in Roach [15]), and an Expansion
Theorem (a generalization of Slater’s Theorem).

One of our long term goals is to enlarge our Lookup
routine to the point that our algorithm should basically
reproduce nearly all 879 (roughly) of the formula rep-
resentations for the Meijer G function listed in chapter
8 of Integrals and Series Volume 3: More Special Func-
tions [13]. We are not at that point yet, but progress is
good. Every formula in this book through our algorithm
turns into infinitely many formulas. We also envision
that our algorithm will appear as an important sub-
routine inside general routines which solve integration
problems.

In the course of this work, we discovered mistakes
in formulas 2(19), 12(7), 12(8), 15(7), 15(8), 18(15),

18(16), 20(8), 20(45), 22(15), 22(16), 22(21) 22(22)

23(34), 25(5), 29(15), 29(16), 40(6), 40(22), 40(23), 43(1),

43(2), 46(9), 46(10), 49(2), 49(8), 49(41), 49(42), and
49(44) of section 8.4 of Integrals and Series Volume 3:
More Special Functions [13]. We have not inspected sec-
tions 41 and 42 discussing the Legendre functions PJ,
and Qj, closely enough yet to comment about their cor-
rectness, but otherwise this list of errors may be nearly
comprehensive.

15 Gallery

The following integrals, most of which appear in In-
tegrals and Series [11], [12], [13] were calculated with
the aid of the theorems and algorithm described in this
paper. The performance of two different computer al-
gebra systems on this test suite is as follows: Maple 5.4
was able to compute a formula for one integral and left
all the other integrals unevaluated. Mathematica 2.2
left six integrals unevaluated, produced four answers
which still contained hypergeometric functions F, and
only computed formulas for three of these integrals.
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