Hypergeometric Function Representations

Kelly Roach
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Abstract

An algorithm for computing formula representations of in-
stances of the generalized hypergeometric function is pre-
sented. Examples of lookup routine certificates and the un-
derlying theory of the algorithm are discussed in the paper.
Finally, a gallery of results are presented and the algorithm
is compared to already existing routines in Macsyma, Maple,
and Mathematica.

1 Introduction

The hypergeometric function F can be defined by

(d’)]. Zj b

@); 7 & a+j,b i
@), _jz_:or<a,5+j,1+j) ©

where @ and b are vectors, p = @, ¢ = |g|, p < q+1,
and |2| < 1if p = g+ 1. Our objective is to compute
representations for instances of F'. For example,

11 2+ 2z Z .
F(-5gige) = g Vime (V)
Various simple expressions and well known functions can

be expressed in term of F. These include exponentials, bino-
mials, logarithms, trigonometric functions, inverse trigono-
metric functions, incomplete Gamma function, error func-
tion, Fresnel integrals, Bessel functions, Kelvin functions,
Airy functions, Struve functions, Anger J function, Weber
E function, Whittaker functions, complete elliptic integrals,
orthogonal polynomials, Lommel functions, polylogarithms,
and Lerch @ function [1], [7]. For example,

113 2)
12
h1

5,5;5,
33 22
=—" PS4
24 /7T (3 +) (22 H 4)

Permission to make digital/hard copies of all or part of this material
for personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication and its date appear,
and notice is given that copyright is by permission of the ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires specific permission and/or fee. ISSAC’96, Zurich,
Switzerland; ©1996 ACM 0-89791-796-0/96/07. .. $3.50

oo

F(ﬁ;g;z) :Z

=0

sin"'(z) = zF (

Lu(z)

301

Su,v (2)
Sl

T—v+D) (ptv+1)

_ 2
xF(l;N ;+3,M+V+3§—z—)

2 4

hypergeometric functions are applicable to integration, dif-
ferential equations, closed form summation, and difference
equations [5], [6], [7]. Some methods will create answers in
terms of F. An algorithm like ours can often reexpress such
answers in terms of better known functions.

2 oF; Example

Let ,F, denote the restriction of F to C* x C? x C. Then
oFo, oF1, and 1 Fy are representable by

F(5;2)=¢
F(bi2) =D(b)2 2 Tyt (2v2)

F(a;;2) =(1—-2)""

presenting no further challenge to us.

We proceed to a 2F; example which is more interesting.
Let D = (0/0z) be the operator for differentiation. The
following shift relations are known:

F (a1 +1,a2;b152) = (aiD+ 1) F (a1,a2;b1;2)
1

F(a1,a2;01 — 152) = (b%D—l-l) F (a1,a2;b1;2)
L —

Also, the following contiguity relations are known:
F (a1 — 1,a2;b1;2)
(a1 —a2) z—2a1 + b1
a1 — b
a1 (1—2)
- a1 — b1
F (a1,az2;61 +1;2)
_ bl((a1+a2—2b1+1)z+b1—1)
- V4 ((11 —b1) (az—b1)
x F(a1,a2;b1; 2)
b1 (b1 — 1) (1 — Z)
z (a1 —b1) (a2 —by)

F (a1,a2;b1; 2)

F (a1 + 1,a2;b1;2)

F (a1,a2;61 — 1;2)

Using these shift and contiguity relations, we can start
from almost any F(a1,a2;b1; 2) representation to obtain any
F(a1+m1,a2+m2;b1+n1; 2) representation where mi, ma,
ny € Z. The denominators appearing in the shift relations
and contiguity relations are troublesome since we can’t let
them become zero.

We show how to compute F (—2,—1;1:2) by starting
from the known formula for F (%, 253 z)
Known:
P(LL3:) - sin” (vz)
2’2’2’ NZ]
Shift:
F(;%&%z)=%2zD+J)F(;%;;Z): 112

Contiguity:

113
F(5357)
1 113 1—2 313
= F(pryd) 7 ()
1 1 .1
:5\/1—z+2ﬁsm (\/E)
Contiguity:
313
F(5357)
5—2z 113 1—2 113
— F(-=.=.2. _ F(=. 2.
4 (2’2525'2) 4 (2,2,2,2)
:5_2z\/1—z+ 3 sin 1(\/2)
8 8z
Shift:
333 313
F(-3332) =D+ D F (-5 552)
(1—Z)3/2
Contiguity:
3 13
F(5337)
1+4z 313 1—2 33 3
— F _— - = F - - —, =
2 (2’252)z)+ 2 (2’252”2)
13422 3+12z _1
6 VvV1i—z+ 16/ sin (\/E)
Shift:
3 11 3 13
P(-3mgi32) =D+ DF (=5 -515:%)
=2 A ()

Hence, we conclude:
3 11 \ 2+z 3vz . 4
F-gmgigs) =5 Vit S (V)

This formula is not explicitly listed in [7]. Neither Mathe-
matica 2.2 nor Maple 5.3 will compute it. Macsyma 419.0
does compute it, but returns a wrong answer.

We will develop a strategy using shift relations and con-
tiguity relations for ,Fy where p and g are arbitrary (subject
to p < g+ 1) to compute F(a + m; b+ i; z) from F(a; 1';'; z).
First, we will study shift relations and contiguity relations
for general ,Fj.

302

3 Shift Operators

We define shift operators A; and B; which apply to ex-

pressions F(&; 5; z) where @ and b are constant vectors. Let
D = (0/0z) be the operator for differentiation. It can be
checked that

(§D+1) F(pu,a@b;2) =F (u+1,3;b; 2)

Define the shift operators A; by
A;=2D+1
a;
We see that A; applied to F(a; I_;; z) increments the ith upper
index of F(@; b; z). Similarly, define the shift operator B; by

V4
b —1

B; D+1

It can be seen that B; applied to F(a; b; z) decrements the
1th lower index of F(a;b; z). Visibly,

A F (E;g;z) =F (Ei+é'¢;5;z)

B;F (a‘;i)’;z) =F (Ei;l_;— é'i;z)

where €; are unit vectors. We need a; # 0 and b; # 1 for A;
and B; to be defined.

4 Differential Equation

Applying products of shift operators to F(a@; b; z) we see that

q
(H Bi) F ((i;g;z) =F (d’;g— 1,z)
i=1
It can be checked that
14 .
(2D) F (Ei; b—1; z) =z ?_1i=(ll)ia_’) (d’+ 1;b; z)
Hence,
I_’_l a; ? -
zigzl) H A; — (2D) E B; | F (a;b;z)
=0

Clearing denominators, we get the differential equation for
F(a;b; 2):

(z H (2D + a;)

XF(&';B;z)
=0

—(zD)H(szLbi—l))

i=1

In this last equation, no restrictions on @ and b beyond those
required by F'(@;b; z) are necessary.

5 Contiguity Relations

Let
b
L, = H (2D + a;)
q
L= (D) [[D +b; - 1)
Jj=1
L=L;—Ly

The differential equation for F (Ei; I_;; z) becomes
LF ((i; 5; z) =0

Now L is a polynomial in D but
2D+ p=a; A+ (p— a;)
ZD+/1,=(b¢—1) B¢+(p—bi+1)

so L can also be expressed as a polynomial in terms of shift
operators A; and B; converting the differential equation
LF(a; 1_)'; z) = 0 into a difference equation among contiguous
instances of F which we call a contiguity relation. Operators

"= (#D+1) (3D+1)
a; +n—1 a;

B} = D+1 D+1

¢ (bl—n +) (bz_l *)

are defined if a; ¢ {0,-1,...,
respectively.
If we express L as a polynomial in A;, then we get

L1=(ai)p ZAf—l- ..+0

q
.—aiH(bj—l—a
j=1

—n+1}and b; ¢ {1,2,...,n}

Ly = (ai) 4, AT+

which has degree d = max (p,q+1).
If we express L as a polynomial in B;, we get

P

Ly=(bi—p), 2B} +...+ (/H (aj—b,-+1)> z

P

p
Lr = (bi—q—1), B{ +.. —bi+1) H i —bi+1)

.+ zb; H

zﬂd(aabaz) + +60(6,g,2)

which has degree at most d = max (p,q + 1).
These results let us define

b+ 1)

“la 1(" €-gz)
—1 n+ — 60, n
Ai = E : ﬁAi
o @o (a—ei,b, z)

303

d—1 -
Bi'=-) — "B
n=0 €

The coefficients of these polynomials in A; and B; are de-
fined when

ao(d'—é'i,g,z)=— —I)H (b —a;) #0
j=1
Bo (@,5+&) =2 (1+b) [(as —b:) #0
j=1

Operators A7 and B for n = 0,1,...,d — 1 are de-
fined if a; ¢ {0,—1,...,—d + 2} and b; ¢ {1,2,...,d —
1} respectively. Hence, Ai1 is defined if a; ¢ {1,0,-1,

—2,...,—d + 2} and al is dlstlnct from all b;. B; ' is de-

fined if by ¢ {1,2,...,d — 1} and b; is distinct from all a;.

Recall that d = max (p7 q+1).

6 Contiguity Relations Il

Here, for example, are the contiguity relations for 1 F> com-
puted by our routine Contig which we’ve implemented us-
ing the ideas of the previous section.

F (a1 — 1;b1,b2;2)
_ —3a%+2b1a1+2b2a1—a1+z—b1b2
B (a1 —b2) (b1 —a1)
x F(a1;b1, b2; 2)
a1 (b1 —3a1+bx—2
(a1 = b2) (b1 — a1)
—a1 (a1+1)
(a1 —b2) (b1 —a1)
F(a1;b1 + 1,b2;2)
bi (—=b7 + b1 +biby + 2 — by)
- z (b1 —a1)
b1 (b1 —1) (2b1 — b2 —2
z (b1—a1)
b1 (b1 —1) (b1 —2)
B z (b1 —a1)

) F (a1 + 1; b1, b2; 2)

F (a1 + 2;b1,b2; 2)

F (a1;b1,b2; 2)

+)F(al;bl—l,bz;z)

F(a1;b1 — 2,b2;z)

7 Proper Sequences

—35 3
z) . Could we have computed
) instead? No. Since A,

Prev1ous1y, we computed F (3
Bi A;T ATPF (3,
AP AT B F(
to F(a1,a2;b1; 2) is

) by computing

2 5 5
11,3, 1 :
143 applied

A71:_(a2—a1)2—2a2+b1 a2(]_—z)A
? az — by a2 —bi
the A;' which applies to By F (3,3;3;2) = F(3,3:3:2)
would be
—1
A= 11 2_21_;
272 272

which is undefined. The order of the shift and inverse shift
operators is therefore important.

Definition A sequence S of shift and inverse shift op-
erators A;, B;, Ai_l, and Bi_1 is a proper sequence if the
composition S| g ... S1 is defined.

8 Suitable Origins

Can we compute F (%;2;;:) =B{'F (%, 1;z) ? No. Since

By' applied to F(a1;b1;2) is
_ b1 (b1+2—1) b1 (bl—l)
Bi'=— B
! z (a1 — b1) z (a1 — b1) !

it would appear that

1 1 1
F(—;2;)——2F(—;1;)+ -F(—; ;)
2 z 5 z 0 5 0; 2z

However, F (%, 0; z) is undefined. B; applied to F (%, 1; z)
would have the form

&:%D+1
which is undefined. Even worse, F (%, 2; z) =2F (%, 1; z) is
false! At z = 0 this equation gives 1 = 2.

Referring back to their definitions, we see A;, B;, A;!,
and Bi_1 applied to F(a; B; z) are defined if a; # 0, b; # 1,
a; ¢ {1,0,—1,-2,...,—d + 2} and a; is distinct from all
bj, and b; ¢ {1,2,...,d — 1} and b; is distinct from all a;,
respectively. Here, d = max (p,q + 1).

Definition. A pair (do; go) is a suitable origin if

e (1) do and bo are free of nonpositive integers

(

e (2) @ and by are disjoint

® (3) Integer elements of bo are > d = max(p,q + 1)
(p = |do| and ¢ = [bol)

-

Definition. A pair (a@;b) is accessible from a pair
(do; Eo) if there exists a proper sequence S of shift and in-
verse shift operators A;, B;, Al-_l7 and Bi—1 such that

F ((i,i;,z) = S|S| S1F(do;go;z)

9 Strategy

Assume @ and b are free of nonpositive integers. Assume @
and b are disjoint. Suppose m = @ — @, = bo — b € Z. We
would try

» q
F (d’;g;z) = H AT H B F (d’o;l;o;z)
i=1 i=1

but this will not always work because of restrictions on
where A;, B;, A7', and B; ' are defined.

Given any vector ¥, let [¥], be the subvector of elements
of ¥ which are congruent to r mod 1. Given any permutation

7 of {1, Ceey |1_)’|} let 71'(17) = (Uw(l),- . .,1)7,(|17‘))
Let
:EZ (al,...,ap,bl,...,bq)

Let m be a permutation which sorts Z into nondescending
order. Let ¥ = w(£). Then [7], is nondescending for every
r € [0,1).

Assume (ao;bo) is a suitable origin such that m = @ —
do, B =bo —b € Z. Let

- 7a0p,b01,- . 7b0q)

X = (A7",... A", B!, B.)

fo = (a01, ..

304

Let §jo = m(i) and Y = 7(X). Assume [§jo], is nondescend-
ing for every r € [0,1).

For any given r € [0,1), plot the elements of [§], and
[#0]r as a function of position. Call the resulting monotonic
polygonal curves Y and Yy. For example, we might get this
picture:

o—>e
o——>e

°
A
50 ®0
It
oii'
.oo*‘
#7187
QT ©
AL O
Yo oc0@0P0
°
Yo
—

To avoid @ and b having elements in common as we apply X;

operators to F(do; bo; z) we may proceed left to right where
Y lies below Yy and right to left where Y lies above or on
Yo.
Let ¢ be a permutation of # that in every plot of [§], and
[J0]- for every r € [0, 1) selects the elements of [§], from left
to right where Y lies below Yy and selects the elements of
[#] from right to left where Y lies above or on Yp. Then

we should apply X; operators to F(d’o;go;z) in the order
Xors - Xo(n(p+a))- That is,

F ((_1:, I_;; Z) = X¢,(7r(p+q)) . X¢(,r(1)) F (Eio; 30; Z)

10 A Theorem
Theorem. Let

e (1) @ and b be free of nonpositive integers.

(2) @ and b be disjoint.

(3) m sort & = (a1, ..

., bg) into nondescend-
ing order

.,ap,bl,..

(4) (do;bo) be a suitable origin
5) @ — do,b—bo € Z

(
(6) Zo = ((101,.. . 7a017:b01:-- . 7b0l1)
(

7) [7(Z0)]» be nondescending for every r € [0,1)

Then (&@;b) is accessible from (@o; bo).

11 Another Theorem

Theorem. The set of hypergeometric functions F(&; b; z)
such that (a;b) is accessible from an origin (@o; bo) is a subset
of a C(z)-module which is generated by a finite basis with
size at most d = max(p,q + 1).

Proof. This follows from the differential equation for
F(a@;b; z) which has order d = max(p,q + 1) and the defini-
tions of the shift and inverse shift operators.

12 Implementation Specifics

The main routine Formula(&,5) computes F(a; b; z). There
is a subroutine Lookup which computes a suitable origin
(@o; bo) for (@;b). There is a subroutine Plan which deter-
mines the proper sequence S of shift operators and inverse
shift operators A;, Bi, Ai_l, and Bi_1 which should be ap-
plied to F(do; 30; z) to produce F(a; 1_;; z). After the plan is
computed, a loop executes the plan by calling subroutines
Shift and Unshift. The Unshift routine calls a routine
Contig which computes contiguity relations and also calls
Shift.

For aesthetic reasons (i.e. pretty answers) all the rou-
tines work, until the very last moment, in terms of a C(z)-
module basis B. In fact, in the current implementation,
C(z) is always Q(z), p is a positive integer, and the answer
will be F(@; b; 2°) = C - B after each step of the main loop
where C' € Q(#)? is a coefficient vector. The basis B is gen-
erally some vector of expressions involving special functions.
The derivative matrix M which has elements in Q(z) satis-
fies the equation DB = M B where D = (9/0z). At the
last moment, z is replaced by 27 since we are interested in
computing F(@; b; z) instead of F(a@; b; 2°). Often, p = 1, but
not always.

13 Main Algorithm

-

proc Formula(d, b)
d:=sort(a)
b:=sort (I_;)
Delete elements @ and b have in common.
if @ or b contains a nonpositive integer then
return polynomial or error
else .
[60, bo, B, C, M, p]::LOOkup(Ei: b):
[@o, bo, plan]:=Plan(a, b, do, 50);
for bucket in plan do
[shift, e]:=bucket;
if e < 0 then
for j from 1 to —e do
[@0, bo, C]:=Unshift(shift, @, bo, 2°, C, M);
od;
elif e > 0 then
for j from 1 to e do
[@0, bo, C|:=Shift(shi ft, @o, bo, 2°, C, M);
od;
fi;
od,;
return subs(z = 2}/, C - B);
fi;

14 Lookup Routine

The Lookup routine currently consists of:

e A table of 71 different [@o, bo, B, C, M, p] entries which
we call certificates.

e Procedures which implement 19 different formulas, each
of which, in effect, add infinitely many more certifi-
cates to the lookup table.

e Number of formulas implemented:

305

oFo 1 oF1 1

1 FO 1 1F1 3

1F> 3 2 4

oFs 2 oF, i

Deriv 1 Lerch & 1
PFD Dupl 1

Deriv, Lerch ®, and PFD Dupl are names of formulas which
will be explained later.

15 Data

The simplest information available to Lookup are the 71

different [do, bo, B, C, M, p] certificates which are stored in a
table. This ; F> entry

11
F(1i35:2) = 1+ VanLo (2V5)

is stored as a certificate whose components are
o=[1]

53]

B=[1,7Lo(22),7 L1 (22)]

1

SH

C =11,z0]
00 0
M=14 0 2
0 2 —=
p=2

16 Small Formulas

‘We have implemented 16 small formulas for , F;, where p and
q are small. For example, this 1 F» formula

1 1\? 2a-1 _—at1/2
F(a;a—l—E,Za;z):F(a—}-E) 2 z /Ia_% (\/E)

is implemented by a routine which returns a certificate
[@o, b0, B, C, M, p] whose components are

do = [a]
- 1
bo = [a+ 5,2a]

1 2 2a—1 _—2a 2
B:[P(a+§) 2 z Iafé(z),

1\2 2a-1
Plats) 2977 ()4 (2),
1 2 2a—-1 -2 2
I‘(a+§) 27970 2 “Ia+%(z)
C =1z,0,0]
L 0
z
M= 1 _2a+1 1
z
0 9 _4a+1
z
p=2

17 Derivative Formula

If an upper index and a lower index differ by a positive
integer, we can use differentiation to reduce the order of a
hypergeometric function.

Theorem Leta—beZ' and

a+l,b i
P(mb+a>:§:p” € Qi
Then
F (a,é’;b,ci;z)

=Y pi (:D)" F(&d;2)

18 Lerch Phi and Polylogarithms

If the coefficients of the series representation of a hyper-
geometric function are rational functions of the summation
index, then the hypergeometric function can be expressed
as a linear sum of Lerch ® functions. The Lerch & function
is defined by

(oo}

Z a+k

k=0

ZSCL

Further, if the parameters of the hypergeometric function
are rational, we can proceed to express the hypergeometric
function as a linear sum of polylogarithms. The polyloga-
rithm function is defined by

Zku

The first theorem shows how to express such a hyperge-
ometric function as a linear sum of Lerch & functions.

Theorem Letd—beZ, co €L, and

G+ 1lco+1,b
- € QU
(d’,co,b+l,1+l> oo
have partial fraction decomposition
i qij
il + —_—
21D ey

Then

Li, (=

Zpl ZD) —+Z qi;

The next theorem can be used to range reduce the third
argument of a Lerch @ into the interval (0, 1].

F aco,bz (2, 4,73)

Theorem @ (z,s,a+ n)

—1 &
- z -
— n n¢
z ; G@+h” + 2 (2,8,a) (n<0)
n—1
27" ®(z2,8,a) (n>0)

The next two theorems show how to convert Lerch ® into
polylogarithms if the third argument is rational.

Theorem ®(z,s,1) = 1 Lis(2)
z

306

Theorem Let m € {1,...,n} and (o = €2 /™. Then
n—1
8 (20 ™) =t S (@) L 8 2)
k=0
Corollary Letm € {1,...,n} and {», = e2™™ Then
n—1
& (Z, 1, m) — _Z (C:;: zl/n)*m log (1 _ C;’;: zl/n)
" k=0
= —y m/nlog(_zl/n)
1+(_1) m _—m/n 1/n
=]
— z_m/" Z (Fl — FQ)
k=1
where
F1:c05(27rkm) log(l—Zcos() Un 4 2/")

F> = 2sin (M) tan_1< Sm(")
n l—cos(

19 PFD Duplication Formula

o)

The most general formula installed as a subroutine of Lookup
combines the use of partial fraction decomposition and the
Gamma duplication formula into a single formula. We use
the notation

a+2 i+n-—1
) n R n

a+1
n
in the theorem below.

Theorem Letd—be€ Z, co € 7T,

ne Z C 27rz/n
a+Ltco+Lb

I R K0!
a,Co,b+ ;,1"1‘ "

have partial fraction decomposition

i qij
;pzl +; 7(l+ii)j

Then
F (d‘aCOaA(é‘an);_"A (d_:n) ,Z)

&l =p, |d| =q,
and

n—1

n—1
% > b Z (nz D)’ Fl+% > g ZFZ
i k=0 i,J k=0

3

where
=F (L,&din ™" ¢ 2")

- 7 - 1
Fo=F|1,¢&ri,...,ri;d,ri+1,...,ri+1;n p+qu’§Z/n

20 Results and Conclusion

The main accomplishment of our algorithm is the essential
reproduction of 1504 formulas in 9 tables of representations
of F(a; b; z) listed in Integrals and Series, Volume 8: More
Special Functions [7]. The total number of formulas in each
of these tables is neatly summarized by the following table:

P, q 0 1 2 3
0 (e} 00 3 11
7.11.1 | 7.13.1 | 7.16.1 | 7.16.2
1 00 72 266
731 | 7.11.2 | 7.14.2
9 352 167 7
7.3.2 | 7.12.2 | 7.15.2
3 621
7.4.2
4 5
7.5.2

The oFp, oF1, and 1 Fp entries are covered by general formu-
las. The remaining 9 tables occupy most of the 186 pages
of Chapter 7 material on hypergeometric functions. Our
algorithm can be used to extend these tables to values of
parameters very far out from those given by Integrals and
Series, Volume 3: More Special Functions [7]. The only
limits on distance are the computer resources of time and
memory.

The next table indicates the proportion of ,F, formulas
with parameters in —%, —%, %, 1, %, 2} that can be reduced
by our algorithm.

p,q 0 1 2 3
0 1.0 1.0 0 .57143
1 1.0 1.0 1.0 0
2 1.0 50417 .56471
3 .75686 .28911
4 .51186

This table means, for example, that our algorithm was able
to compute 51.186% of the 4F3’s. (Our algorithm does re-
duce other instances of ¢F> and 1 F3, but none with the pa-
rameters mentioned here.)

In more recent work, our algorithm has been extended

to compute representations for F(a; 5; —z), therefore making
our algorithm encompass even more elementary and special
functions.

21 Gallery

We now present a gallery of formulas produced by our algo-
rithm. While our algorithm has been used to compute thou-
sands of representations for F, we must limit ourselves here
to putting on display just a small number of these represen-
tations. To make a point of the strength of our algorithm,
we’ve selected examples which are not listed in Integrals and
Series, Volume 3: More Special Functions [7], cannot be
computed by Mathematica 2.2’s HypergeometricPFQ func-
tion, and cannot be computed by Maple 5.3’s hypergeom
function. Macsyma 419.0’s hgfred function is able to make
progress on the first, third, and fourth examples (for the
latter two choosing representations in terms of whittaker m
and alegendre_p) but is unable to eliminate hyper_f from
the remaining examples. These examples are all quite typi-
cal of the formulas that can be produced by our algorithm.

19
F(E’E’Z)

_ 525+280z+1402°
=" 128 23 ¢
4 525 + 630 z + 420 22 + 280 2°
256 27/2

F(_ﬁ._l l.z)
2’ 2’2
= (14 22) cosh (2V/z) + V/zsinh (2V/z)
—42% 8hi (2/2)

Vmerfi (\/E)

F(-

3 1 5
3 3be)
5—4z .,/ (f)

5 ¢ big)t

3 1
F(-33%2)

 4+242-282°
=T e K(VA)

44562+ 422
15z7 E(\/;)

< z/2I

T el (3)
5 12

— M2 me PV erfi (\/Ezl/‘l)
— 2z werf (ﬁz1/4)
x erfi (\/521/4)

F(;L%A;Z)
= —g berg (2 \/Ezl/4)2
V4

36 —36/Z+92 1/
—Tbero@ﬁz)

X ber; (2 \/§z1/4)

36 +36z+92 1/4
Y . bero(2\/§z)

x beis (2v22'/)

+

184+ 272 1/4y2
—Wberl (2\/52)

36 +36/z+ 92 1/a
—Tberl (2\/52)

X beio (22 2/4)
— % beio (2v22/4)?

36—-36yz+92z, . 1/4
—Tbelo (2\/52)
x beis (2v22'/)

18+272, . 1/4y2
Wbell (2\/52)

307

35
F(E,E,E),Z)

432 — 24z + 96 22

=—$Io (2\/;)

432 + 192 2z + 48 22
+ 5 2 7/2 L (2 \/E)

48

52
X (Io (2vz) L1 (2Vz)

1 (2v7) Lo (2v3))

1
F (—5,1,2;3,4;z)
_ 480 +3472 2 — 2100 2°

525 23
_ 2 3
L 480437122 — 10242% +192 2 s
525 23
32 1 Vi—z
_571°g(§+ 2)
11.35
P(-335537%)
__3—3z
16 z
3-32°
— So5a7z (log (1—2) —log (1+V2))
3 . 3 .
+8\/EL12(\/E)_8\/;L12 (_\/E)
F(l,?,S;%A;z)
_ 45-302-32°
422 (1—2)

45—-60z+92° . _4
T (v2)

_ 1+§\/EIO(4 1/4)+1 S\/EJ (421/4)
1/4 1/4
-T2 (a2 + T (a2

308

1 1 1 2
F (5)_57 _51 _gaz)

_ 2-62% 49222182 6321/3
N 6
n 446213 -92%3_362 8—32;1/3/2

6
(57
X cos —

1/3 1/3
z 243z
—(5) \/ge_szl/s/2

: (3 \/?_)zl/?’)
X sin | ————

References

[1] Abramowitz, M. and Stegun I. A. (eds.) (1965), Hand-
book of Mathematical Functions, Dover Publications,
Inc., New York.

[2] Erdelyi, A. (ed.) (1953), Higher Transcendental Func-
tions, Volume I, Robert E. Krieger Publishing Com-
pany, Malabar, Florida.

[3] Lafferty, E. L. (1979), “Hypergeometric Function
Reduction—an Adventure in Pattern Matching”, Pro-
ceedings of the 1979 MACSYMA Users’ Conference,
465-481.

[4] Luke, Y. L. (1969), The Special Functions and Their
Approzimations, Volume I, Academic Press, San
Diego.

[5] Marichev, O. 1. (1983), Handbook of Integral Trans-
forms of Higher Transcendental Functions: Theory and
Algorithmic Tables, Ellis Horwood Limited, Chichester,
England.

[6] Petkovsek, M. and Salvy, B. (1993), “Finding All
Hypergeometric Solutions of Linear Differential Equa-
tions”, Proceedings of ISSAC 93, ACM, New York.

[7] Prudnikov, A. P.; Brychkov, Yu. A.; Marichev O. L
(1990), Integrals and Series, Volume 8: More Special
Functions, Gordon and Breach Science Publishers.

KELLY ROACH currently works on symbolic integration and
special functions as part of the Symbolic Computation Group
at the University of Waterloo. He graduated from Caltech,
did graduate work at MIT and Stanford, worked on Lexical
Functional Grammar and Common Lisp at Xerox PARC,
and also worked at Wolfram Research Inc. His research in-
terests are in Mathematics and Computer Science.

