Symbolic—Numeric Nonlinear Equation Solving

Kelly Roach
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Abstract

A numerical equation-solving algorithm employing differen-
tiation and interval arithmetic is presented which finds all
solutions of f(z) = 0 on an interval I when f is holomorphic
and has simple zeros. A two dimensional generalization of
this algorithm is discussed. Finally, aspects of a broader
symbolic-numeric algorithm which uses the first algorithm
as a foundation are considered.

1. Introduction

Computer algebra systems such as Maple and Mathemat-
ica include numerical equation solvers such as fsolve and
NSolve. However, it seems that existing equation solvers
are limited because they do not return all solutions and they
are not guaranteed to find a solution if one exists. Outside
of polynomial systems, symbolic equation solving algorithms
of such systems seem to be in even worse shape. Published
numerical algorithms like Brent [2] start out with local as-
sumptions about equations f(z) = 0 such as a change of
sign in f(z) has been detected and make it their goal to find
a single root of f(z). Nerinckx and Haegemans [10] give a
comparative study of 10 FORTRAN and ALGOL programs
nonlinear equation solvers. Rice [13] presents a slightly more
up to date comparison of 8 nonlinear equation solvers.

We seek a more global approach which is guaranteed to
find all solutions of an equation f(z) = 0 by assuming f is
holomorphic (a smooth function) and the domain I of the
unknown z is finite. The last restriction is needed because
Richardson [12] shows the problem is otherwise unsolvable.
We assume the zeros of f(z) are simple (meaning f(a) = 0
implies f'(a) # 0), though we would like to lift this restric-
tion. Methods for escaping this restriction in some cases
with multiple zeros (not simple) are discussed later.

Although “nonlinear equation” in general has a very broad
meaning (see Saaty [15]), in this paper a nonlinear equation
is an equation f(z) = 0 where f is a univariate function that is
not of the form f(z) = a z + b. Efficient algorithms for equa-
tions where f(2) is a polynomial in z, such as Uspensky’s
algorithm or Sturm sequences are known and are described

in Collins and Loos [4]. Our emphasis is on solving more
difficult non—polynomial equations like

e (®) _ sin(zsin(z)) =0
and at the same time offering a guarantee that we have found
all the solutions.

2. Simple Zeros of a Holomorphic Function

In this section we sketch ideas we have implemented to com-
pute zeros of a smooth real-valued function on a real interval.
Let £: 2 — C be holomorphic on 2 C C, I = [a¢,a1] be a
closed real interval contained in 2, f be real valued on I, f
be not constant on I, and f have simple zeros on I.

Since f is holomorphic, f is infinitely differentiable. (Corol-
lary 2.12, page 73, Conway [5]). Since I is compact, f and f'
have finitely many zeros on I. (Theorem 3.7, page 78, Con-
way [5]). The zeros of f' on I are distinct from the zeros of f
on I because the zeros of f are simple. Therefore, recursively
bisecting I into increasingly smaller subintervals eventually
isolates each zero r of f on [in a subinterval I, C I on which
f is also strictly monotone.

Now, we assume the existence of an interval arithmetic
package ® such that given any derivative £(™) of f and subin-
terval [bo, b1] C I, we have

&(f™ | [bo, b11) = [co, c1]

with either [co,c1] C R or [co,c1] = [~00,00]. Given any set

S C R, define open neighborhoods N,(S) about S by
N(S)={z | 3y € S suchthat |z—y| <€}

We let We(S) represent the closure of N.(S).

We will assume @ has the following continuity property:
Given any € > 0, ¢ € I, and derivative £f(") of f, there
exists § > 0 (6 may depend on ¢, z, and f(")) such that if
J = Ns(z), then &(f(™,J) C N.(f(")(J)). In fact, by the
compactness of I we can suppose ¢ is independent of z (see
Rudin [14]).

All of the above leads us to the following primitive algo-
rithm for detecting zeros of f.

proc Zeros(f, [ao,a1])
if not CouldBeZero(f, [ag,a1]) then
return 0;
elif not CouldBeZero(f',[ao0,a1]) then
if f(ao) f(a1) > 0 then
return 0;
else
return Locate(f, [ao, a1]);
fi;
else
a:= (a0 +a1)/2;
if f(a) # 0 then
return Zeros(f,[ao,a]) U Zeros(f, [a, a1]);
else
§:= (a1 —a0)/4;
while CouldBeZero(f',[a — §,a + 6]) do
§:=16/2;
od;
return Zeros(f,[ao,a — é]) U {a}
U Zeros(f, [a + 6§, a1]);

fi;

proc CouldBeZero(f, [ao, a1])
return (f(ao)f(a1) < 0 or 0 € ®(f, [a0,a1]));

proc Locate(f, [ao, a1])
if 0 € [ao,a1] and f(0) = 0 then
return {0};
else
while true do
a:= (a0 +a1)/2;
ifaga; >0
and |ao — a1|/min(|ac|, |a1]) < PREC then
break;
elif f(a)f(a1) > 0 then
a1 = a;
else
ao = a;
fi;
od;
return {a};

)

PREC is a small positive number like 1072° determined
by the current working precision. The next two sections
sketch ideas that improve the time efficiency of this algo-
rithm. The Mean-Value Theorem speeds up procedure Ze-
ros. Newton’s method speeds up procedure Locate.

3. Application of the Mean-Value Theorem
From calculus we know that if N¢(z) C I = [ao,a1] then
f(z +¢€)=1(c) + f'(ﬁ)e

for some ¢ € N.(z) C I. If |f'(¢)| < B for all £ € I and
f(z) # 0, then f(y) # 0 for all y € N(z) NI where ¢ =
|f(z)|/B. Thus, while searching for zeros of f on I, we can
eliminate all of Ne(:z:) N I from consideration if we know
f(z) # 0 and a finite bound B. If interval I is sufficiently
small, then ®(f',I) will determine a finite bound B on f'.
This leads to procedure Narrow(f,I) which trims the ends
of interval I by this technique before calling Zeros (if it
must). The recursive calls in Zeros are changed to be calls
to procedure Narrow.

We change lines 13 and 19-20 of procedure Zeros to be:
return Narrow(f,[ao,a]) U Narrow(f, [a, a1]);

return Narrow(f,[ao,a — §]) U {a}
U Narrow(f,[a + 6, a1]);

and add procedure Narrow below:

proc Narrow(f,[ao,a1])
B := Bound(f', [ao, a1]);
if B # oo then
for 7 from 1 to FUDGE, do
a0 = ao + [f(a)|/B;
ar i= ax — [f(ar)|/B
ifa; < ao then
return 0;
fi;
od;
fi;
return Zeros(f, [ao, a1]);

proc Bound(f, [a, a1])
[bo, bl] = @(f, [ao 3 al]);
return max(|bo|, |51);

FUDGE, is a “fudge factor” which we currently set as
FUDGE, = 20.

4. Newton’s Method

Once a root is sufficiently isolated by bisection and nar-
rowing, a faster numerical method can be applied to ob-
tain remaining digits of the root. Newton’s method, the
secant method, Muller’s algorithm, third—order Newton it-
eration, and quadratic inverse interpolation all have super-
linear convergence and are described in Rice [13]. We use
Newton’s method because it is well-known, is efficient, has
low—overhead, and is easy to analyze.
Given function f, define function g by

g(z) =2z - fi((i'))

If r is a root of f on I,, then g(r) = r. Hence r is a fixed
point of g. Newton’s method for calculating root r of f starts
with an approximation r¢ and then successively computes
Tnt+1 = g(7n). Under the right conditions, explained below,
the sequence 7o, r1, 2, ... converges to r.

Formulas for the derivatives of g are:

(=10

e s (=) Zf"(z)2 f(2)£"(2)
g (2)= f'(z) - £1(z)? f'(z)?

Letting € = 7n» — 7 and using g(r) = r and g'(r) = 0 we
obtain via Taylor series expansions the results

€nt1 =g (&1) €n
g”(ﬁz) 2
2

€ntl1 = — " €n

for some &1,& € Ne, (7). If |g'(&1)| < B1 and |g"(&2)| < B2
for all &,¢; € I and f'(z) # 0 for all z € I,, then Newton’s

method is safe to use and converges faster than bisection if
either 1 1 1
B < = B<—< ——m
! 2 or 2 2 €0 -2 (a1 — ao)
and we can guarantee that all »; € I,. The latter can be
arranged by tweaking Newton’s method so that if r; = g(ro)
overshoots the boundaries of interval I, then r; is shoved
back towards the root r. Subsequent r; computed by r,4+1 =
g(rn) then proceeds without incident. Hence, we use
min(ao, max(g(re),a1)), ifn=0
Tnt1 =

g(rn), ifn>1

Now we assume ®’s continuity property extends to deriva-
tives g(") of g on subinterval I, C I. If interval J C I, is
sufficiently small, then ®(g', J) and ®(g", J) will determine
finite bounds B; and B-.

We modify procedure Locate and introduce procedures
NewtonTest and Newton. Procedure NewtonTest tests
whether Newton’s method should be used and procedure
Newton actually implements Newton’s method. These are
listed below.

proc Locate(f, [ao, a1])
if 0 € [@o,a1] and f(0) = 0 then
return {0};
else
for : from 1 do
a:= (a0 +a1)/2;
if (i mod FUDGE;,) =0
and NewtonTest(f, [ao,a1]) then
a := Newton(f, [ao, a1]);
break;
elifapa; >0
and |ao — a1|/min(|ac|, |a1]) < PREC then
break;
elif f(a)f(a1) > 0 then
a1 = a;
else
ao = a;
fi;
od;
return {a};

)

proc NewtonTest(f, [ao, a1])
global B, B,;
if CouldBeZero(f',[a0,a1]) then
return false;
else
€ 1= a1 — o,

a: _‘(al —|—a0)/2

if B, > 1/2 and B; > 1/(2¢€) then
return false;
else
B; := Bound(g', [a0,a1]);
B; := Bound(g"/2, [a0,a1]);
if B; > 1/2 and B; > 1/(2¢€) then
return false;
else
return true;
fi;

proc Newton(f, [ao,a1])
global B;, By;

a:= (a1 +a0)/2;

a := max(ao, min(g(a), a1));
€:= (a1 —ao

while ¢/(|a| — €) > PREC and B; < Bz e do

a = g(a);
€:= B¢
od;
while ¢/(|a| — €) > PREC do
a 1= g(a);
€:= B> 62;
od;
return g;

FUDGE,; is another “fudge factor” which in our algo-
rithm is currently set to the value FUDGE> = 6.

5. Results

The preceding algorithm has been implemented in Maple
and run on various inputs including the following examples:

(1) e —6z2
(2) sin(z2) log(1+2z) — cos(\/iz)

Figures 1.1-1.2 picture these two functions.

The operations of procedures Zeros and Narrow are
represented in Figures 2.1-2.2. Each right triangle repre-
sents a narrowing step by procedure Narrow. A triangle with
vertices (a,f(a)), (a,0), (a + |f(a)|/B, 0) represents Narrow
detecting f(a) # 0 and B = Bound(f’,[a0,a1]) < co allow-
ing Narrow to eliminate subinterval (a,a + |f(a)|/B) as a
possible location for any zeros of f.

The effects of procedure Zeros can be seen wherever
there is a change in the slope of the hypotenuses of the
triangles or two right triangles’ altitudes merge together.

Gaps on the z-axis between the triangles (most visible in
Figure 2.2), represent procedures Locate and Newton tak-
ing over from procedures Zeros and Narrow to locate an
isolated root of f. Closeups of this process for selected roots
are shown in Figures 3.-1-3.2. Points (a,f(a)) in the trajec-
tories computed by Locate and Newton are also shown.
The points converge onto the z-axes where the roots are
located.

In Maple, we choose nsolve as the name of the main rou-
tine to resemble Maple’s routine fsolve. Procedure nsolve
returns Nonlin(...) objects and these, like E or Pi, can be
evaluated via Maple’s evalf to as many decimal places as

desired. Thus,

for z € [0,4]

for z € [0, 4]

> nsolve(E"z-6%z,z,0..4);

[Nonlin(...), Nonlin(...)]

> evalf(",30);

[.204481449339915533617757754510,
2.83314789204934214261167464234]

Each Nonlin(...) object records the nonlinear equation which
is solved, the Newton iteration formula, a bounding interval

for the root, and the two bounds B;, Bz needed by procedure

Newton to terminate properly.

6. Two Dimensional Systems

Let f1,f2 : @ — C x C be holomorphic on 2 C C x C;
I = [ao,a1] X [bo,b1] be a closed real parallelepiped con-
tained in Q; f1,f; be real valued on I; curves fi(z1,z2) =0
and f;(z1,z2) = 0 intersect in a finite number of points;
the partial derivatives 8f;/0z; # 0 at each such point; the
Jacobian J = [8f;/dz;] is nonsingular at each such point.

The two dimensional algorithm is like the one dimen-
sional algorithm in that it uses bisection. However in this
case, bisection means cutting rectangles in half, either width-
wise or lengthwise depending on which way is most prof-
itable in improving precision. After each bisection, ®(f;, I)
and ®(0fi/0z;,I) are computed. If 0 ¢ ®(fy,I) or 0 ¢
®(f2,1I), then I can be eliminated. Otherwise, continued
bisection produces I such that 0 ¢ ®(0f;/dz;,I), in which
case the extrema of f; and f> must occur at the corners of
I. Tt is then possible to determine if f; # 0 on some edge
E of I and if so to use ®(8f;/dz;,E) < B < oo to perform
narrowing.

Bisection and narrowing ultimately produce a parallel-
epiped I such that 0 ¢ ®(det(J),I) and both f; and f;
change sign on I. A nonsingular Jacobian J implies that
fl(:z:l,:z:z) = 0 and fz(:z:l,:cz) = 0 can intersect in at most
one point p in I. Each curve fj(z1,z2) = 0 intersects the
boundary &I of I twice at points p;; and pi;2. Supposing
p is in the interior of I, then all 4 intersection points p;;
are distinct and can be isolated from each other. If the p;;
points alternate with the ps; points around the perimeter of
I, then the two curves actually do intersect and point p ex-
ists. Otherwise, the two curves do not intersect and p does
not exist.

The generalization of Newton’s formula to two dimen-
sions is

§5) = 7- 7 K(2)
and bounds ||Dg‘(§1)||2 < B; and ||D2g'(§1)||2 < Bs; must be

determined.

7. Results

The two dimensional algorithm has been implemented in
Maple and run on some inputs including

(1) -6y, e —6z for (z,y) €[0,4] x [0,4]

(2) z —3cos(3:z:)—y, zT—y— 2cos(2y)
for (z,y) € [0,4] x [0,4]

Figures 4.1-4.2 plot the curves fi(z,y) = 0 and f3(z,y) =
0 for these examples. The solutions being sought are the
intersection points of these curves.

The operations of the two dimensional Zeros and Nar-
row procedures are represented graphically in Figures 5.1-
5.2. Most rectangles represent regions of the zy—plane elim-
inated by steps in either Zeros or Narrow. Only the very
smallest rectangles represent regions that have not been
eliminated and these surround the solutions we seek.

Finally, Figures 6.1-6.2 are closeups for selected solu-
tions of these two systems which picture the trajectories
of approximate solutions (zn,ys) computed by two dimen-
sional versions of the Locate and Newton procedures. The
Newton iteration formulas for example (1) are

e’(e"z—e”"+6y—6)
e?e¥ — 36

e (eYy—6—¢e?+6z)
e?e¥ — 36

gl(zay) =

gz(zay) =

and these lead to solution (x,y)=(2.8331478920493421425,
2.8331478920493421425) as shown in Figure 6.1.

8. Multiple Zeros, Non-Holomorphic Functions, Infi-
nite Intervals

Hoenders and Slump [7] describe a method for determining
number and multiplicities of zeros of a function based on a
numerical quadrature technique, but as they show in their
Tables 4-5, this technique is unstable. It seems unlikely
to us that any numerical technique could decisively solve
this problem. Symbolic methods can come to our aid in
some instances. First, if f(z) € K(z) is a rational function
over a suitable computable extension K of @, then square—
free factorization is applicable. Second, if f(z) € K(z,60(z))
where K(z,0(z)) is a purely transcendental extension of a
computable extension K of @, z = a is a multiple zero, and
f(z) = h(z,0(z)) where h is a rational function, then

r1(a,6(a)) = h(a,0(a)) =0
r2(a,0(a)) = hi(a,6(a)) + h2(a,8(a)) 9‘(0,) =0

are rational functions in a and 6(a) identical to zero. Since
y = 0(a) is a common root of both r;(a, y) and r2(a,y), the
resultant

r(a) = res(ri(a, y),r2(a,v),y)

must be zero. Hence a is aroot of r(z) = res(r1(z,y),r2(z,9), y)

and is algebraic over K. The equation r(z) can be solved
symbolically for z = a and then this solution substituted
into f(z) and f'(z) to ascertain if f(a) = f'(a) = 0 proving
z = a is a multiple zero. Third, if f(z) can be decomposed
as a composition f(z) = u(v(z)), z = a is a root of u(z) with
multiplicity m, z = b is a root of v(z) — a with multiplicity
n, then z = a is a root of f(z) with multiplicity m n.
A piecewise holomorphic function defined by

fi(z), forzel
f— f2(2), forzel;

fa(2), forzel,

consisting of finitely many holomorphic f; : — C may be
treated as n separate inputs to our algorithm.

An expression f containing non-holomorphic subexpres-
sions can sometimes be rewritten to become holomorphic
or piecewise holomorphic. As an example, suppose f(z) =
u(|v(z)|) where u and v are holomorphic. Then solve u(z) =
0 and replace |u(z)| by better expressions +u(z).

Our algorithm is restricted to a finite interval I. In some
cases, such as f(z) = sin(z), this is necessary, for otherwise
there would be an infinite number of solutions. In other
cases, such as f(z) = e* — 6 z, there are only finitely many
solutions even on I = R. The strategy proposed in this case
is to use some asymptotic analysis to find a,b € R such that
f(z) is non-zero on (—oo, a) and (b, co) leaving only I = [a,]
to contend with.

9. Elementary Solutions

Bundy and Welham [3] describe concepts of attraction,
collection, and isolation which sometimes lead to solu-
tions of nonlinear equations. Taking a somewhat related
algorithmic approach, suppose f(z) € K(z,61,...,6,) is an
elementary expression where each ; is exponential, logarith-
mic, or algebraic. Factoring, we suppose f(z) = p(z,61,...,0x)
is irreducible in R = K|[z,601,...,0,]. Apply rules

(1) (em(z))a (enz(Z))bHeam(sznz(z)

(2) alog(m(z)) + blog(nz(z))
— log ((m(2))* (m(2))?) +27ir(2)

(3) eM(z)talog(nz(2)) _, (nz(z))aem(z)

(4) log(m(2) (€))% .
— log(m (2)) + an2(z) + 2 i k()

(5) p(6) — 6 — rootof(p(z), z, 5(z))
(6) " — ¢ — n —log(c) + 2 7 x(z)
(7) log(n) —c —n—e°

(8) rootof(p(z),z,a) — ¢ — p(c)

where a,b € Z and k : C — Z is an integer—valued piecewise
constant function of z.

For rule (1), let §; and #; be exponentials. Try to find
integers a, b, ¢ such that f(z) = p(6:,0;) = 0;°q(6:* ;%)
(consider p(0, y) and degrees) and simplify f(z) to q(6) where
0 = exp(a n:i(2) + bn;(2)).

For rule (2), let 6; and 6; be logarithms. Try to find a
rational g such that p(6;,6;) = q(8; + 1 0;) (consider p(z, 1),
p(1,y), and lcoeff’s) and simplify f(z) to q((6 + 27ik)/a)
where 6 = log (:t(m(z))“(nz(z))b), p = b/a, and k € Z
is chosen according to a given root z = r (given by our
numerical algorithm).

Rules (1)-(2) are applied first. Rules (3)-(8) are applied
with new factorization. This scheme will solve some equa-
tions.

10. Conclusion

The algorithm in this paper promises to return all solutions
of an equation f(z) = 0 over an interval I. The generalization
to two dimensions does the same in two dimensions and
we are confident the same method can be generalized to n
dimensions.

Computer algebra is moving out of the era where sym-
bolic expressions like (a b)¢, v/z%, Maple’s RootOf, and Math-
ematica’s InverseFunction have had poor or no relation to
actual numbers into an era where proper semantics estab-
lishing a mapping from symbolic expressions to complex
numbers is fully appreciated and enforced. Symbolic expres-
sions are names for numbers. In this paper, we introduce a
new kind of name, the Nonlin(...) object. Rather than a
vague unknown solution of a nonlinear equation (cf. Math-
ematica’s InverseFunction), a Nonlin(...) object represents
a particular number which can be evaluated to as many dec-
imal places as the user likes, just as it is possible to do with
Pi or E. The future promises to bring more such objects
into the realm of computer algebra: implicit functions, im-
plicit solutions of differential equations, etc., and such ob-
jects will always have a definite meaning over the field of
complex numbers. The mathematical impetus to study the
algebra of such objects more carefully will likely emerge as
these objects come on line, can be routinely calculated, and
are equipped with sensible semantics.

References

[1] Alefeld, G., and Herzberger, J. (1983) Introduction to
Interval Computations, Academic Press.

[2] Brent, R. P. (1971), “An Algorithm with Guaranteed
Convergence for Finding a Zero of a Function”, The
Computer Journal, 14, 422-425.

[3] Bundy, A., and Welham, B. (1981) “Using Meta-Level
Inference for Selective Application of Multiple Rewrite
Rules in Algebraic Manipulation”, Artificial Intelli-
gence 16(2).

[4] Collins, G. E. and Loos, R. (1983) “Real Zeros of Poly-
nomials”, Computer Algebra Symbolic and Algebraic
Computation, Second Edition, (ed. B. Buchberger,
G. E. Collins, and R. Loos) Springer-Verlag, 83-94.

[5] Conway, John B. (1978), Functions of One Complex
Variable, Second Edition, Springer-Verlag.

(6] Hardy, G. H. (1910), Orders of infinity. Cambridge
Tracts in Mathematics 12.

[7] Hoenders, B. J. and Slump, C. H. (1992) “On the De-
termination of the Number and Multiplicity of Zeros of
a Function”, Computing, 47(3—4), 323-336.

[8] Ioakimidis, N. I. and Anastasselou, E. G. (1986) “On
the Simultaneous Determination of Zeros of Analytic
or Sectionally Analytic Functions”, Computing 36(3)
239-247.

[9] Kearfott, R. Baker (1991) “Decomposition of Arith-
metic Expressions to Improve the Behaviour of Interval
Arithmetic for Nonlinear Systems”, Computing 47(2),
169-191.

[10] Nerinckx, D., and Haegemans, A. (1976), “A Com-
parison of Non-Linear Equation Solvers”, Journal of
Computational and Applied Mathematics 2, 145-148.

[11] Ratschek, H., and Rokne, J. (1984) Computer Methods
for the Range of Functions, Ellis Horwood Limited.

[12] Richardson, Daniel (1968) “Some Undecidable Prob-
lems Involving Elementary Functions of a Real Vari-
able”, The Journal of Symbolic Logic 33(4), 514-520.

[13] Rice, John R. (1993) Numerical Methods, Software, and
Analysis, Academic Press, 323-410.

[14] Rudin, Walter (1976),
Analysis, McGraw—Hill.

Principles of Mathematical

[15] Saaty, Thomas L. (1981), Modern Nonlinear Equations,
Dover.

[

Figure 1.1

e’ —6z

Figure 1.2

sin(z2)log(1 + z) — cos(v/22)

DWWW/WW’é

nd

W 3 4

Figure 2.1

e’ —6z

Figure 2.2

sin(z?)log(1 + z) — cos(v/22)

Figure 3.1

e —6z

Figure 3.2

sin(z2)log(1 + z) — cos(v/22)

o
o
A
2 T o T)
Sl
[8
Figure 4.1 e —6y, e¥—6z Figure 4.2 ¢ — 3cos(3z) —y, = —y— 2cos(2y)
1 = o
i
1+ — ;:E[
Y £l 3 Y
Figure 5.1 e —6y, e¥—6z Figure 5.2 ¢ — 3cos(3z) —y, ¢ —y— 2cos(2y)
2.842+ 0.7382
2 841 0.738 %
2.8381 0.7378
2.8361 o 07376 1
0.7374
2.834 o ° ° o
i 0.7372 §§°
2.832 ° ° °
0.737
2.831
0.7368
2.8281 ° ° °
0.7366 1
2.826
0.7364
2.824
2.824 26 2.828 2.83 2.832 2.834 2.836 2.838 2.84 2.842 0. 7362+ 0.5442 0.5444 0.5446 0.5448 0. 545 0.5452 0.5454 0.5456 0.5458
Figure 6.1 € —6y, €Y -6z Figure 6.2 ¢ — 3cos(3z) —y, z—y— 2cos(2y)

